

Foxwood Close
Foxwood Industrial Park
Sheepbridge
Chesterfield
Derbyshire
S41 9RB
United Kingdom

T: 01246 261 828 F: 01246 261 830 sales@par.uk.com www.par.uk.com

TECHNICAL DATA
DOLPHON® XL-2110

**Low Emissions Polyester Impregnating Resin** 



Page 1 of 3



## **DESCRIPTION**

The XL-Series is a new generation one-pack 100% reactive solventless polyester resins specifically designed to eliminate emissions of volatile organic compounds (VOC), which are regarded as atmospheric pollutants and significant health hazards, whilst retaining the properties of conventional Polyester resins.

XL-2110 is suitable for application via conventional dip, VPI, trickle or roll-through.

#### **ADVANTAGES**

- → UL Certified File OBOR2.E317427
- → Included in UL Electrical Insulation Systems up to 220°C File OBJS2.E317429
- ightarrow Monomer free contains no vinyl toluene, styrene or DAP
- → Low odour, formaldehyde-free resin
- → High flash point low fire risk, lower insurance premiums
- → Low viscosity for quick & complete penetration
- → Fast curing cycles
- → Good bond strength
- → Very low weight loss on cure
- → Suitable for all impregnation methods
- ightarrow Not classed as hazardous for transport under ADR regulations

# **APPLICATIONS**

ightarrow Transformers ightarrow Generators ightarrow Rotors & armatures ightarrow Inductors

ightarrow Random wound coils ightarrow Stators ightarrow Traction coils

| PHYSICAL PROPERTIES                             |                   |
|-------------------------------------------------|-------------------|
| Colour                                          | Clear/Amber       |
| Specific gravity @ 25°C                         | 1140 ± 30g/L      |
| Viscosity, ISO No.6 Cup @ 25°C                  | 80 - 130 seconds  |
| Viscosity, Brookfield @ 25°C                    | 600 - 900 cPs     |
| Flash-point (PMCC)                              | > 130°C           |
| Gel-time @ 110°C                                | 10 - 20 minutes   |
| Weight loss on cure, 10g resin 1h @ 150°C       | < 3.5%            |
| Thermal conductivity                            | 0.25 - 0.30W/mK   |
| Shelf life @ 25°C in original closed containers | 18 months         |
| Pack sizes                                      | 25, 230 & 1,200Kg |
| RoHS & REACH SVHC compliant                     | Yes               |

# **MECHANICAL PROPERTIES (IEC 61033)**

|                                               | Temperature | Newton's @ Break |
|-----------------------------------------------|-------------|------------------|
| Method B, Bond strength, Helical coil         | 25°C        | > 130            |
| Test performed on MW35 magnet wire            | 80°C        | > 82             |
| Coils double impregnated and baked 1h @ 150°C | 155°C       | > 45             |

#### ® Registered trademark

Statements, technical information and recommendations contained herein are based on tests we believe to be reliable but they are not to be construed in any manner as warranties expressed or implied. The user shall determine the suitability of the product for their intended use and the user assumes all risk and liability whatsoever in connection therewith.



Page 2 of 3

| ELECTRICAL PROPERTIES                                  |                                   |                          |  |  |
|--------------------------------------------------------|-----------------------------------|--------------------------|--|--|
| Electric strength @ 25°C, dry (ASTM D-115)             | 100 - 120kV/mm                    | 100 - 120kV/mm           |  |  |
| Volume resistivity (IEC 60464-2)                       | 10 <sup>15</sup> ohms/cm          | 10 <sup>15</sup> ohms/cm |  |  |
| Volume resistivity after 7 days water immersion (IEC 6 | 50464-2) 10 <sup>12</sup> ohms/cm | 10 <sup>12</sup> ohms/cm |  |  |
| Surface resistance (IEC 60464-2)                       | 10 <sup>15</sup> ohms             |                          |  |  |
| Dielectric constant @ 25°C (ASTM D-150)                | 3.2                               | 3.2                      |  |  |
| CTI (IEC 60112)                                        | 600 M                             | 600 M                    |  |  |
| THERMAL RATING (UL 1446)                               |                                   |                          |  |  |
| ANSI wire type                                         | Twisted Pairs                     | Helical Coils            |  |  |
| MW 35                                                  | 200°C                             | /                        |  |  |
| UL Electrical Insulation System File OBJS2.E317429     | 220°C                             |                          |  |  |
| CHEMICAL DESISTANCE                                    |                                   |                          |  |  |

| CHEMICAL RESISTANCE                                 |                    |           |
|-----------------------------------------------------|--------------------|-----------|
| Water absorption (ASTM D-570)                       | 90 minutes @ 100°C | < 1.5%    |
|                                                     | 24 hours @ 25°C    | < 1%      |
| Resistance to solvent vapours (IEC 60664 pt2)       | Xylene             | Resistant |
|                                                     | Methanol           | Resistant |
|                                                     | Hexane             | Resistant |
| Resistance to chemicals, 7 days immersion (ISO 175) | Sulfuric acid 30%  | < 2.5%    |
|                                                     | Green gasoline     | < 1.5%    |
|                                                     | Transformer oil    | < 0.5%    |
|                                                     | Detergent solution | < 1.5%    |

# **APPLICATION**

XL-2110 is suitable for application via dip at atmospheric pressure, under vacuum (VPI), or for trickle/roll-through.

# **DIP IMPREGNATION**

- 1. Pre-heat unit to 50 60°C maximum.
- 2. Dip units for 30 60 minutes.
- 3. Drain for 1 hour minimum
- 4. Cure for either 2.5 hours @ 150°C, 2 hours @ 160°C or 75 minutes @ 170°C.

# **ROLL-THROUGH**

- 1. Roll the rotor in the resin at room temperature.
- 2. Rapidly bring the rotor to 140°C to gel the resin by means of induction.
- 3. Cure for 30 minutes approximately @ 140 150°C.

## TRICKLE

- 1. Pre-heat armatures or stators to 115 120°C (temperature measured on unit)
- 2. Trickle the resin onto the unit keeping in slow rotation.
- 3. Cure for 30 minutes approximately @ 150 160°C.

# VPI

For vacuum pressure impregnation (VPI) or specific impregnation cycles, please consult us.

### NOTE:

During the polymerisation cycle, the resin can cause a 'greening' effect on bare copper.

Anti-Greening Additive 551/D can be added to the tank to prevent this effect.

Page 3 of 3

# STORAGE & STABILITY

| Store drums in a cool place away from direct sunlight and sources of heat. Maximum storage temperature 30°C. XL-2110 reacts with bare copper, copper alloys and natural rubber. It is therefore not advisable to use these materials in the construction of storage tanks and impregnation equipment. XL-2110 is very sensitive to UV rays. When the resin is not in use, storage tanks must be covered and protected from sunlight. Exposure to sunlight, even for a few hours may cause partial gelling of the resin surface. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HEALTH & SAFETY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Before use, please refer to Material Safety Data Sheets (MSDS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |